
A CATIONIC CYCLOPENTANNELATION

Marcus A. Tius" and Donald P. Astrab Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.

<u>Abstract</u>: The alkoxyallene adducts of <u>O</u>-trimethylsilyl hydroxymethylene ketones undergo a facile acid catalyzed cyclization to produce functionalized cyclopentenones in high yield.

We have recently disclosed a method for the preparation of catechol monoethers from α -methylene ketones.¹ Although the aromatic products were obtained in high yield it was postulated that a more convenient procedure for the preparation of <u>ortho-quinones</u> and catechols might be possible through the use of a more highly oxidized three carbon nucleophile. The addition of α -lithio- α -methoxymethylallene² to <u>O</u>-trimethylsilyl hydroxymethylene ketones produced adducts <u>1</u> which upon brief treatment with tetra-<u>n</u>-butyl-ammonium fluoride in tetrahydrofuran of -78°C produced aldehydes <u>2</u>. Epoxidation of either

of the two alkene groups of 2 could have led to an oxyallyl zwitterion³ and a mechanism for its cyclization to an <u>ortho-quinone 3</u> can be written. In the event, treatment of 2, derived from $4-\underline{tert}$ -butylcyclohexanone, with <u>m</u>-chloroperoxybenzoic acid in dichloromethane

at 25°C led to a single product which was clearly not the quinone. The same product, subsequently identified as hydroxycyclopentenone 4, was obtained from Lewis acid treatment of 1. Adventitious <u>m</u>-chlorobenzoic acid evidently catalyzed the rapid conversion of 2 to 3.⁴

This extraordinarily simple pathway to densely functionalized cyclopentenones should prove to be synthetically useful. The similarity between the methylenomycins^{5,6} and the structures afforded by this cationic cyclopentannelation is noteworthy. In order to probe the scope of this reaction a series of experiments was undertaken (Table 1). The reaction is not limited to <u>0</u>-trimethylsilyl hydroxymethylene ketones. Phenyl⁷ (entry 5) or thiophenyl⁸ (entry 6) substitution on the exo methylene group is tolerated by the reaction. Of particular interest with regard to the synthesis of the methylenomycins is the cyclization of 2-methylene-4-<u>tert</u>-butylcyclohexanone⁹ (entry 7) which demonstrates that stabilization of the intermediate allylic cation derived from <u>1</u> is not necessary for the success of the reaction.

Ongoing research in our laboratories will attempt to demonstrate the utility of this serendipitous discovery for a short synthesis of methylenomycins. Representative experimental procedures follow.

Nucleophilic addition of α -lithio- α -methoxymethylallene. A solution of 4 mmol of <u>n</u>-butyllithium in 6 ml of a 1/1 mixture of ether and tetrahydrofuran (THF) was treated at -78°C with 5 mmol of methoxymethyl allenyl ether. Anion formation was presumed to be complete after 30-45 min.^{2a} A solution of 1 mmol of the unsaturated ketone substrate¹⁰ in 10 ml of ether/THF was added via cannula to the rapidly stirring lithicallene solution at -78°C. The progress of the reaction was monitored by thin layer chromatography. After ca. 30 min the reaction was quenched by addition of 3 ml of water. Upon warming to room temperature the reaction mixture was partitioned between ether and water. The ethereal layer was washed with water and brine and was dried (MgSO₄) and was concentrated to produce adducts 1 in 65-95% yield. Although the products of this reaction were stable to chromatography on silica gel, purification prior to cyclization was unnecessary.

<u>Cationic cyclization</u>. To a solution of 1 mmol of allene adduct in 10-15 ml of dichloromethane at 0°C was added boron trifluoride etherate (1 μ l/5 mg) dropwise with rapid stirring. The progress of the reaction was monitored by thin layer chromatography. Upon completion (< 10 min) the reaction was quenched with 5% aqueous NaHCO₃ and was allowed to warm to room temperature. Partitioning between dichloromethane and water followed by drying (MgSO₄) and concentration produced the crude products which were purified by flash chromatography (ethyl acetate/hexane). Yields varied from 60-92%.

<u>Acknowledgement</u> is made to the National Science Foundation, CHE-83-03495, and to the Research Corporation for their generous support. NSF grant CHE-81-00240 supported the purchase of the 300-MHz NMR spectrometer.

<u>Table 1</u>

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	l _{H nmr} (CDCl ₃ , δ)	$ir (\gamma_{max}, cm^{-1})$	mass spectrum ( <u>m</u> / <u>e</u> )
1.	OH 76%a mp 160-161°	<pre>b6.10 (d, J = 1.5 Hz, 1H, =CH) 5.62 (br s, 1H, =CH) 4.93 (br s, 1H, CHOH) 0.91 (s, 9H, tBu)</pre>	3400, 1700, 1640	220(p), 202(p-H ₂ O), 163(p-tBu), 136 Calcd for $C_{14}H_{20}O_2$ 220.1463 Found 220.1467
2.	OH 66-72%d	<pre>b6.11 (br s, 1H, =CH) 5.62 (br s, 1H, =CH) 4.85 (br s, 1H, CHOH) 2.28 (q, J = 7.6 Hz, 2H, CH₂) 2.11 (s, 3H, CH₃) 1.03 (t, J = 7.6 Hz, 3H, CH₃)</pre>	3450, 2950, 1710, 1650	152(p), 137, 134(p-H ₂ 0), 123, 109, 95 Caled for C ₉ H ₁₂ O ₂ 152.0837 Found 152.0822
3.	OH 68% ^d	C6.05 (br s, 1H, =CH) 5.60 (br s, 1H, =CH) 4.85 (br s, 1H, CHOH) 3.38 (br s, 1H, OH) 2.08 (s, 3H, CH ₃ ) 1.76 (s, 3H, CH ₃ )	3450, 2950, 1700, 1645	138(p), 124, 123, 122, 120(p-H ₂ O), 111, 110, 95 Calcd for C ₈ H ₁₀ O ₂ 138.0681 Found 138.0669
4.	O BOX	^C 5.95 (br s, 1H, =CH) 5.52 (br s, 1H, =CH) 4.84 (br s, 1H, C <u>H</u> OH) 3.56 (br s, 1H, OH) 1.39 (m, 8H, CH ₂ )	3450, 2900, 1710, 1645	192(p), 177, 175, 164, 149, 135 Calcd for C ₁₂ H ₁₆ O ₂ 192.1150 Found 192.1142
5.	0, 75-78 <b>%^е</b> Рн	<ul> <li>b7.28 (m, 5H, ArH)</li> <li>6.05 (d, J = 0.5 Hz, 1H, =CH)</li> <li>5.09 (br s, 1H, =CH)</li> <li>4.20 (br s, 1H, CHOH)</li> <li>1.68 (m, 4H, CH₂)</li> </ul>	2960, 1710, 1645	224(p), 196(p-CO), 187, 181, 167, 147(p-Ph), 135, 77 Calcd for C ₁₆ H ₁₆ O 224.1201 Found 224.1198
6.	SPH	<pre>b7.24 (m, 5H, ArH) 6.14 (d, J = 1.6 Hz, 1H, =CH) 6.12 (d, J = 1.6 Hz, 1H, =CH) 5.59 (br s, 1H, =CH) 5.54 (br s, 1H, =CH) 4.43 (br s, 1H, =CH) 0.90 (s, 9H, tBu) 0.88 (s, 9H, tBu)</pre>	3400, 2980, 1710, 1590	312(p), 255(p-tBu), 204, 203(p-SPh), 202, 176, 137 Calcd for C ₂₀ H ₂₄ OS 312.1548 Found 312.1559
7.	56 <b>%</b> f	<pre>C6.03 (d, J = 1.4 Hz, 1H, =CH) 5.32 (d, J = 1.6 Hz, 1H, =CH 3.08 (br s, 2H, CH₂) 0.90 (s, 9H, tBu)</pre>	2950, 1710, 1645	204(p), 176(p-CO), 148, 147(p-tBu), 117 Calcd for C ₁₄ H ₂₀ O 204.1514 Found 204.1507

(a) Overall yields from the  $\alpha$ -hydroxymethylene ketones. All materials were purified by flash chromatography. (b) Recorded at 300 MHz. (c) Recorded at 100 MHz. (d) The cyclization was performed at -78°C. The initially formed <u>0</u>-trimethylsilyl product was treated with tetra-<u>n</u>-butylammonium fluoride prior to workup. (e) Overall yield from the methiodide salt of 2-dimethylaminomethyl-4-<u>tert</u>-butylcyclohexanone.

## References and Notes

1. M. A. Tius and A. Thurkauf, <u>J. Org. Chem.</u>, <u>48</u>, 3839 (1983).

- 2. (a) S. Hoff, L. Brandsma and J. F. Arens, <u>Recl. Trav. Chim. Pays-Bas</u>, <u>87</u>, 916 (1968);
  (b) D. Gange and P. Magnus, <u>J. Am. Chem. Soc</u>., <u>100</u>, 7746 (1978); (c) H. J. Reich and M. J. Kelly, <u>J. Am. Chem. Soc</u>., <u>104</u>, 1119 (1982).
- 3. (a) M. Bertrand, J. P. Dulcere, G. Gil, J. Grimaldi and P. Sylvestre-Panthet, <u>Tetrahedron Lett</u>., 1507 (1976); (b) H. J. Reich, M. J. Kelly, R. E. Olson and R. C. Holtan, <u>Tetrahedron</u>, <u>39</u>, 949 (1983).
- 4. Epoxidation of 2 with m-chloroperoxybenzoic acid in the presence of excess aqueous NaHCO₃ does not lead to 4. An epoxide, presumably derived from a zwitterionic interme-diate, is formed instead. M. Tius and S. Ali, unpublished results.
- 5. Structure elucidation: (a) T. Haneishi, N. Kitahara, Y. Takiguchi and M. Arai, J. <u>Antibiotics</u>, <u>27</u>, 386 (1974); (b) T. Haneishi, A. Terahara and M. Arai, J. <u>Antibiotics</u>, <u>27</u>, 393 (1974); (c) J. Jernow, W. Tautz, P. Rosen and T. H. Williams, <u>J. Org. Chem.</u>, <u>44</u>, 4212 (1979). Several syntheses of methylenomycins have been reported. For examples see: (d) J. Jernow, W. Tautz, P. Rosen and J. F. Blount, <u>J. Org. Chem.</u>, <u>44</u>, 4210 (1979); (e) R. M. Scarborough, Jr., B. H. Toder and A. B. Smith, III, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>102</u>, 3904 (1980); (f) Y. Takahashi, H. Kosugi and H. Uda, <u>Chemistry Lett.</u>, 815 (1982); (g) A. B. Smith, III, and D. Boschelli, <u>J. Org. Chem.</u>, <u>48</u>, 1217 (1983); (h) E. Negishi and J. A. Miller, <u>J. Am. Chem. Soc</u>., <u>105</u>, 6761 (1983), and references cited therein.
- 6. The ¹H nmr spectrum of entry 3 of Table 1 is very close to the reported ^{5a} spectrum for methylenomycin B. The ¹³C nmr spectrum for the hydroxy compound of entry 3 was recorded: (CDCl₃, 75.6 MHz)  $\delta$  193.58, 165.97, 147.72, 141.85, 114.89, 72.82, 12.98, 7.84.
- 7. The substrate was prepared by base catalyzed condensation of benzaldehyde with excess cyclohexanone in ethanol.
- 8. R. E. Ireland and J. A. Marshall, <u>J. Org. Chem.</u>, <u>27</u>, 1615 (1962).
- 9. (a) J. L. Roberts, P. S. Borromeo and C. D. Poulter, <u>Tetrahedron Lett</u>., 1621 (1977);
  (b) T. A. Bryson, G. H. Bonitz, C. J. Reichel and R. E. Dardis, <u>J. Org. Chem.</u>, <u>45</u>, 524 (1980).
- The preparation of <u>0</u>-trimethylsilyl hydroxymethylene ketones has been described: M. A. Tius and S. Ali, <u>J. Org. Chem.</u>, <u>47</u>, 3163 (1982).

(Received in USA 30 January 1984)